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ABSTRACT

We estimate the 7t — 70 electromagnetic mass difference within the 1/N ex-
pansion approach to hadronic matrix elements. Perturbative QCD and a truncated
meson theory describe the high and low photon loop-momentum contributions re-
spectively. The matching between these complementary pictures for strong interac-

tions is discussed.



Despite our better understanding of strong interactions, the theoretical study
of hadronic weak decays remains a rather difficult problem. For illustration, the
AI = 1/2 rule observed in K-decays has defied explanation since more than thirty
years. This unsatisfactory situation is due to our present inability of treating strong
interaction corrections to weak processes below the one GeV confining scale. The
evaluation of the corrections arising from the low loop-momenta requires indeed rel-
atively new non perturbative tools such as lattice, QCD sum rules or 1/N expansion
[1]. The latter analytical approach is particularly simple and provides already a
good qualitative description of light meson strong interactions [2]. After all, the
Zweig rule observed in ¢-decays, i.e., at a scale where perturbative QCD breaks

down, can only be understood in the framework of 1/N expansion.

It has been recently advocated [3,4] that 1/N expansion also gives quantitative
predictions for weak hadronic matrix elements. In the large-N limit, the four-quark
operators induced by perturbative QCD split into products of two-meson operators.
The further non-perturbative corrections arising from physics below one GeV can
then be estimated within a truncated chiral perturbation theory. Therefore the 1/N
expansion approach allows a link between the short-distance domain of perturbative
QCD and the long-distance domain where a description in terms of hadronic bound
states is obviously more appropriate. The difference between this complementary
approach and the standard pure chiral perturbation theory treatment has been given
in ref. [5].

In this letter, we consider the 7t — 70 electromagnetic mass difference using
the method developed in ref.[ 4]. We use the photon momentum to divide the loop-
integration into two parts. For the photon momentum ¢ between zero and the
Euclidean M? cut-off, we evaluate the contribution to the mass difference within
an effective chiral Lagrangian truncated to the lowest-lying mesons. On the other
hand, above M2, we first use the perturbative QCD picture to derive an expression
in terms of quark field operators and then take the large-N limit to express these

0 mass difference

operators in terms of meson fields. The advantage of the t —x
over the weak hadronic matrix elements treated in ref. [4] is this unique identification

of the loop-momenta involved in the QCD and meson pictures.

The leading order N (in the 1/N expansion) factorizable contribution to the



7t — x0 electromagnetic mass difference is forbidden by spin-parity. For the same
reason, the next-to-leading factorizable contributions are also vanishing. The aim of
this letter is therefore to estimate the next-to-leading nonfactorizable contributions

to the 77 — #¥ electromagnetic mass difference.

Let us start with the calculation of the perturbative QCD contribution above the
cut-off M2. Penguin-like diagrams only induce isospin zero operators which cancel
among each other in the mass difference. Consequently, in the chiral limit, the order
as contributions are simply given by the diagrams in Fig. 1. A straightforward
calculation of these two Feynman diagrams leads to a (gauge invariant) expression
in terms of four-quark current-current and density-density operators. Their 7 — «
hadronic matrix elements are easily estimated using the well-known non-linear ¢
model for the pion fields 7% coupled to external (axial)-vector currents V,(A4,) and

(pseudo)-scalar densities S(P):
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L= %TT{D“WD#U +r(mtU + UTm)} (1)
withm=8—-iP,U= e:cp(@),vr =Y ,2e7n% and fr = 132 MeV. The covariant
derivative in Eq. (1) is defined by

A straightforward identification with the QCD Lagrangian gives then the fol-

lowing bosonization of currents and densities
.. _ f2 -
VIH(AL) = Gvu(s)e: = zf[BpU”‘UiaﬂUUﬂ“]”

. 2 .
SH-iP) =g = LUt L0

(3)

with r{(u)ms(p) = 2m%(,ms(,u) being the strange quark mass defined at the renor-
malization point .

The large N approximation ensures the factorization of the four-quark operators
induced by the diagrams of Fig. 1. Consequently, only the density-density operators
survive in the chiral limit (mx = 0) and we obtain the following 7+ — 20 square

mass difference:

o _ dg?
AmZ(pert. QCD) ~ 6 ef-;”-as(< 0q5|0>)2 ] ?i_ (4)
T



with < 0 | g7 | 0 >= —f2r/4. We notice that the result given in Eq. (4) can also
be derived in the operator product expansion approach where the pion fields are
first reduced. The explicit expansion of the induced vector-vector minus axial-axial

current operator is given in ref. [6].

Let us now turn to the evaluation of the meson contributions below M2, The
pseudoscalar exchange contributions (see Fig. 2a) are obtained from Eq. (2) with

the substitution
Vyu = e.diag(2/3,-1/3,-1/3)B;™; A, =0 (5)
and we find
am20~t) = Saem [ ag | ®

If we define the cut-off M to be the { matching) scale where the integrands in
Egs. (4) and (6) are equal, we obtain the reasonable range 0.7 GeV > M > 0.6 GeV
for 0.12 GeV < m;(1 GeV) < 0.18 GeV. The total contribution to the at — 0
electromagnetic mass splitting is then twice the short-distance contribution. We
obtain Am ~ m_ + —m_ o = 6.4(4.3) MeV for A q¢cp = 0.3 GeV and ms(1 GeV) =
0.12(0.18) GeV, respectively. For A gcp = 0.2 GeV, we find Am = 5.5(3.7) MeV.
This is in fair agreement with the “observed” mass difference Am®*P = (443 +
0.03) MeV obtained [7] after substraction of the small effect due to the (mg — mu)

quark mass difference.

The severe truncation of the meson theory to the pseudoscalars represents a
good first step. However, a comparison between Eqgs. (4) and (6) indicates a rather
strong dependence on M 2 (see Fig. 3). A direct test of our method is therefore to

improve the meson approximation by including heavier resonances.

Let us consider the vector (V) and axial-vector (A,) exchange contributions to
the 7+ — #0 mass difference (see Fig. 2b). The minimal chiral-invariant “massive
Yang-Mills” version of the Lagrangian containing 7, p and a; mesons and satisfying

the two Weinberg sum rules {8} reads [9]:

f2 + 1 L ppv o pR ppv
£=—8—TrD,,UD,uU —ZTT(FquL + FuFg )

1 1
+mY Tr((Vu — Evp)Q + (Ap - 3-4#)21



with Lu(Ry) = Vg Au = $0a(V2A%) and Fit®) = 0,L(R), - 8, L(R),

— ig[L(R)y, L(R}y). The covariant derivative defined with respect to the gauge

symmetry is given by

DU = 8,U ~igL U +igUR, (8)
In the absence of kinetic terms for the (axial)-vector mesons (second term in Eq. (7)),
the Lagrangian reduces simply to the kinetic terms given in Eq. (1). Note that
the perturbative QCD result (see Eq. (4)) is not modified since the coupling of the
physical pions to the (pseudo)-scalar densities remains unchanged. The non-diagonal
kinetic term 0,7 A* contained in Eq. (7) can be rotated away by the following change
of variables
Ay — Ay —zdyrw
f - v 9)
U-U

with = = (mi - m%)l/z/mAmV y =my/my and mA = m + %—f,,.gQ Electro-

magnetism is incorporated by using the substitution given in Eq. (5). Consequently,
vector dominance is implemented and the diagrams of Fig. 2a are simply replaced
by those of Fig. 2b, with the momentum-dependent hadronic vertices [10] defined

by Eqgs. (7) and (9). The integration over the photon low-momenta becomes then

M? mim?
Am2(0_+,1"",1++)— 4V dg? 10
zeem |, (42 + m)(g% + m%) 1o

The same result can be derived by using the so-called “hidden symmetry” approach
of Bando et al. [11]. If we send the cut-off M to infinity in Eq. (10) and assume the
KSRF relation [12], i.e. ¥ = v/2, we recover the famous result obtained [13] using

current algebra techniques, namely Am = %%En? = 5.1 MeV. This successful
extrapolation from one GeV to infinity requires a huge correlation among heavier
resonance contributions [14]. This can only be justified if the large ¢% contributions
are estimated in the framework of perturbative QCD, which is precisely the basic
feature of the 1/N expansion approach considered.

In the small-g® limit (¢ < m?,1 4)» Eq. (10) simply reduces to the Eq. (6).
On the other hand, in the large-¢? limit (¢ > m%,, 4)> Eq. (10} reproduces the g%
dependence derived from perturbative QCD and given in Eq. (4). Consequently, the



inclusion of the (axial)-vector exchange contributions clearly improves the matching
between perturbative QCD valid at large q® and the meson picture truncated to
the pseudoscalar fields valid at small q®. This implies a better stability of the
total 7+ — 70 mass difference (Eqgs. (4) and (10)) with respect to cut-off variations
around the one GeV scale where both pictures for strong interactions should be
reasonable (see Fig. 3). For mq, = v2m, and ms(1 GeV) = 120(180) MeV, we

obtain respectively

Am = 4.4(3.4) MeV if A qcp = 0.3 GeV

11
Am = 4.0(3.0) MeV if A qcp = 0.2 GeV (1

to be compared with A®*P = (4.43£0.03) MeV. We note that the numerical results

in Eq. {11) are not very sensitive to the value of the a; mass.

The explanation of the observed AT = 1/2 rule in A-decays advocated in ref. [4]
is mainly based on the fact that for low loop-momenta, the logarithmic operator
evolution derived within perturbative QCD is turned into a physical quadratic one,
giving rise to sizeable long distance effects despite the small range of integration.
Just like for the 7+ — 7% mass difference considered in this letter, we expect that the
(axial)-vector exchange contributions play a crucial role in the matching of the two
pictures but not in the numerics. This is in fact supported by an explicit calculation
[15] of the effects of vector mesons on another (AS = 2) weak hadronic matrix

element, i.e. the B-parameter.

In the case of the 7T — #¥ mass difference, the identification of the loop-
momentum of the virtual quarks and gluons with the loop-momentum of the virtual
mesons is straightforward since they are the same as the one carried by the photon
(see Figs. 1 and 2). For weak hadronic matrix elements on the other hand, such
an identification is more involved since the standard perturbative QCD approach
requires first the integration of the W-propagator. An exact identification would re-
quire the conservation of the explicit momentum flowing through the W-propagator.
However, even in that case, we would be left again with the usual arbitrariness of
A qcp at the one-loop level.

In conclusion, the 7+ — 7 electromagnetic mass difference provides a nice il-

lustration of the 1/N expansion approach for hadronic matrix elements proposed

in ref. [4). It emphasizes the crucial role played by the (axial)-vector mesons in



the matching of the truncated meson theory and perturbative QCD around one
GeV. This simple analytical approach to estimate hadronic matrix elements mani-

festly deserves further investigations and comparisons with other non-perturbative
methods.

After completion of the work we became aware of a meson one-loop calculation

of the mass difference using a different parametrization for the (axial)-vector mesons
[16].

FIGURE CAPTIONS

Fig. 1: Non-zero contributions to the short distance part of the #t — 70 mass differ-
ence. The wavy line is a photon, the curly line a gluon and the full line a

quark.
Fig. 2:

(a) Feynman diagrams contributing to the long distance part of the »t —

0

7° mass difference for the low-energy truncation with only pseudoscalar

mesons.

{(b) Same but for the low-energy truncation with the pseudoscalar, vector and

axial-vector mesons.

Fig. 3: The 7+ — 70 electromagnetic mass difference as a function of the cut-off A

(scale where we match the meson and quark-gluon pictures).

(a) Dashed line: long distance part calculated with pseudoscalar mesons only

and with Agcp = 0.3 GeV,ms(1 GeV) = 0.12 GeV.

(b} Full line: long distance part calculated with pseudoscalar, vector and
axial-vector mesons and with Agcp = 0.3 GeV,mg(1 GeV) = 0.12 GeV.

(c) Dash-dotted line: same as {b) but with Agcp = 0.2 GeV and m(1 GeV)
= 0.18 GeV.
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